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Recently, a novel concept for the computation ofessentialfeatures of the dynam-
ics of Hamiltonian systems (such as molecular dynamics) has been proposed. The
realization of this concept had been based on subdivision techniques applied to the
Frobenius–Perron operator for the dynamical system. The present paper suggests
an alternative but related concept that merges the conceptual advantages of the dy-
namical systems approach with the appropriate statistical physics framework. This
approach allows us to define the phrase “conformation” in terms of the dynamical
behavior of the molecular system and to characterize the dynamical stability of con-
formations. In a first step, the frequency of conformational changes is characterized
in statistical terms leading to the definition of some Markov operatorT that describes
the corresponding transition probabilities within the canonical ensemble. In a second
step, a discretization ofT via specific hybrid Monte Carlo techniques is shown to
lead to astochasticmatrix P. With these theoretical preparaions, an identification
algorithm for conformations (to be presented in a later paper) is applicable. It is
demonstrated that the discretization ofT can be restricted to few essential degrees of
freedom so that the combinatorial explosion of discretization boxes is prevented and
biomolecular systems can be attacked. Numerical results for the n-pentane molecule
and the triribonucleotide adenylyl(3′–5′)cytidylyl(3′–5′)cytidin are given and inter-
preted. c© 1999 Academic Press

Key Words: conformation; conformational dynamics; hybrid Monte Carlo;
reweighting; essential degrees of freedom; transition probabilities; Markov operator;
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1. INTRODUCTION

The classical microscopic description of molecular processes leads to a mathematical
model in terms of Hamiltonian differential equations. In principle, the discretization of
such systems permits a simulation of the dynamics. However, direct simulation is even
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today restricted to relatively short time spans and to comparatively small discretization
steps. Fortunately, most questions of chemical relevance just require the computation of
averagesof physical observables, ofstable conformations, or of conformational changes.
In a conformation, thelarge scale geometric structureof the molecule is understood to be
conserved, whereas on smaller scales the system may well rotate, oscillate, or fluctuate. The
computational characterization of a conformation via direct simulation thus often requires
inaccessibly long time spans.

Therefore, most approaches to the identification of conformations neglect the dynamical
aspect: they are intereted only in finding clusters of molecular configurations with signifi-
cantly different large scale geometric structure and realize this by a straightforward statistical
analysis of some appropriate set of sampling data, compare [3, 4]. Unlike these approaches,
we herein advocate todirectlyattack the determination of conformationstogetherwith the
computation of their stability time spans and the rate of transitions between them. Therefore,
it is suggested to define the phrase “conformation” in terms of statistical mechanics andnot
in terms of molecular geometry: aconformationis understood as somealmost invariant
subset in the position space—a notion which means that the fraction of systems in the molec-
ular ensemble, that leave this subset during some fixed observation time, is “small.” The
algorithm to be presented allows us to decompose the position space into such dynamically
defined conformational subsets and to compute the corresponding transition probabilities.
This approach distinctly differs from other approaches to the characterization of conforma-
tional transitions, e.g., via artificial acceleration of molecular processes (cf. [5–7]).

The key idea of the algorithmic realization of the new approach goes back to the work of
M. Dellnitz and co-workers on the approximation of almost invariant sets in dynamical sys-
tems [8]. Therein, it was suggested to compute almost invariants subsets in phase space via
the discretized eigenvalue problem for the Frobenius–Perron operator, an operator which
describes the propagation of probability within the system. This “dynamical systems” ap-
proach has been realized for molecular dynamics [1], but, even though the numerical results
were intriguing, this approach suffers both from an (yet) unclear theoretical justification
and from the so-called “curse of dimension” of the proposed subdivision algorithm.

Herein, we will propose an alternative strategy that merges the conceptual advantages of
the dynamical systems approach with the appropriate statistical physics framework. The key
step of its derivation is the replacement of the Frobenius–Perron operator by the statistically
correct spatial transition operator. The conceptual background of this replacement and its
algorithmic consequences are first outlined in Section 2 and subsequently discussed in
more detail in Sections 3 and 4. The single steps of the resulting algorithm are illustrated by
numerical results for the rather simple n-pentane molecule (Section 5). Its applicability to
biologically relevant systems—in particular the circumvention of the curse of dimension—
is exemplified at a small ribonucleotide.

2. OUTLINE OF THE METHOD

Before we go into the technical details of this paper, we want to give a “bird’s eye view”
of the new approach as a whole.

2.0.1. Theoretical Framework

As usual in molecular dynamics, we assume that we are dealing with an ensemble of
molecular systems that is described by some (stationary) densityf0 in the phase space0
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of the molecular systems under consideration. Moreover, we suppose that the dynamical
behavior of a single molecular system starting at timet = 0 in statex0∈0 can be described
by the formal solutionx(t)=8t x0 of certain Hamiltonian equations of motion (compare
Section 3 for details). Then thetransition probabilitybetween two subsetS1, S2⊂0 is
given by

w(S1, S2, τ ) = 1∫
S1

f0(x) dx

∫
S1

χS2(8
τ x) f0(x) dx (1)

with χS denoting the characteristic function of the setS⊂0, i.e.,χS(x)= 1 iff x ∈ S and
χS(x)= 0 otherwise. We are interested inalmost invariantsubsets, i.e., in setsS⊂0
with large probabilities to stay within, which, for the time being, can be expressed as
w(S, S, τ )≈ 1. In [1], chemical conformations were understood as such almost invariant
subsets in phase space0. However, they are usually understood to be objects inposition
space. Therefore, we herein characterizeconformational subsetsasspatial subsetsB of
positionsq∈ B. If we allow for arbitrary momentap, we are naturally led to thephase
space fiber

0(B) = {(q, p) ∈ 0,q ∈ B} (2)

associated withB. Consequently, the spatial subsetB is said to be a conformational sub-
set whenever the phase space fiber0(B) is almost invariant in the sense thatw(0(B),
0(B), τ )≈ 1.

The crucial step towards the algorithmic identification of suchconformational subsetsis
the derivation of some Markov operatorT in Subsection 3.3, which describes theprobability
of position fluctuationswithin the canonical ensemble. Consequently, the Markov chain
{qk}k=0,1,... generated byT allows us to simulate the spatial transitions in the ensemble.
The chain takes values in the position spaceÄ and has the following basic properties:
First, its stationary probability to be within a spatial subsetB⊂Ä, denoted byπ(B),
is given via the ensemble densityf0, i.e., π(B)= ∫

0(B) f0(x) dx, and, second, its one-
step transition probabilitiesP(q1∈C |q0∈ B) between subsetsB,C⊂Ä are given by the
transition probabilties within the ensemble between the corresponding spatial fibers

P(q1 ∈ C |q0 ∈ B)

π(B)
= w(0(B), 0(C), τ ). (3)

This illustrates that the generatorT of the chain is the statistically correctspatial transition
operatorof the ensemble. Following [8, 1], our algorithmic strategy is to identify confor-
mational subsets via eigenmodes of the dominant eigenvalues ofT (see Subsection 3.3).

2.0.2. Algorithmic Realization

In order to compute these eigenmodes (and thus the conformations), we will have to
discretize the corresponding eigenvalue problem. We realize this by means of a Galerkin
procedure (Subsection 4.1) based on a box coveringB1, . . . , Bn⊂Ä of the position space.
This discretization step results in a reversible stochastic transition matrix whose entries are
just the transition probabilitiesw(0(Bk), 0(Bl ), τ ) between the discretization boxes.

Due to (3), we may compute these entries of the transition matrix via simulation of the
Markov chain associated withT . The approximation of this chain naturally leads to standard
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hybrid Monte Carlo (HMC) sampling techniques (Subsection 4.2). By construction, the
transition probabilties of the resulting HMC chain are similar to that of the original chain
whose probability to leave some conformational subset is extremely small. Consequently,
the sametrapping problemoccurs for the HMC chain, which leads to the rather unsat-
isfactory convergence properties of HMC when applied to biomolecules, as reported in
the literature [9]. In order to circumvent this problem, a novel approach combining HMC
with the reweighting technique [10, 11] has been presented in [12]. This HMC variant,
called adaptive temperature hybrid Monte Carlo (ATHMC), facilitates the transitions by
repeatedly switching to an increased temperature in order to cross crucial energy barri-
ers followed by a correction of this momentary overheating via reweighting to the en-
semble of the original temperature (cf. Subsection 4.2). Application of this technique
allows us to compute the entriesw(0(Bk), 0(Bl ), τ ) of the transition matrix, even for larger
molecules.

However, even if we can compute arbitrary transition probabilities, any discretization
of the transition operatorT will suffer from the “curse of dimension” whenever it is
based on the decomposition of all of the hundreds or thousands of degrees of freedom
in a typical biomolecular system. Fortunately, chemical observations reveal that—even for
larger biomlecules—only relatively fewconformationalor essential degrees of freedomare
needed to describe the conformational transitions [13]. Different techniques are available
for identifying these essential degrees of freedom based on reliable simulation data (see
Subsection 4.3). We herein suggest applying these techniques to an ATHMC sampling.
Having completed this identification process, we can avoid discretization of by far the most
degrees of freedom of the molecular system under investigation; only the low-dimensional
essential configuration space has to be discretized which leads to a tremendous reduction
of dimension.

Once the entries of the corresponding transition matrix have been computed based on
ATHMC sampling data, we have to determine the eigenvectors of its dominant eigenvalues.
That is, only an approximation of the dominant eigenelements of the transition matrix is
required,not its full diagonalization. Thus, actual evaluation of the required eigenvectors
is efficiently possible using subspace oriented iterative techniques, even if the number of
discretization boxes may be about 100,000 or larger (depending on the spectral properties
of the matrix, see Subsection 4.3). The final step, the determination of the conformational
subsets from these eigenvectors, is realized by means of a specific identification algorithm
presented in [2].

The whole algorithmic scheme of the direct conformational dynamics approach is illus-
trated in Fig. 1.

FIG. 1. Basic scheme of the algorithm. Gray boxes are presented in [2].
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3. CONFORMATIONS AS ALMOST INVARIANT SETS

In classical MD (cf. textbook [14]) a molecule is modeled by a Hamiltonian function

H(q, p) = 1

2
pT M−1 p+ V(q), (4)

whereq andp are the corresponding positions and momenta of the atoms,M the diagonal
mass matrix, andV a differentiable potential. The HamiltonianH is defined on the phase
space0⊂R6N . The corresponding canonical equations of motion

q̇ = M−1 p, ṗ = −gradV (5)

describe the dynamics of the molecule. The formal solution of (5) with initial statex0=
(q(0), p(0)) is given byx(t)= (q(t), p(t))=8t x0, where8t denotes the flow.

On the smallest time scales (say, 1 femtosecond) the dynamics described by the flow
8t consists of fast oscillations around equilibrium positions (bond length or bond angle
vibrations). In contrast to these fast fluctuations the phrase “conformations” describes meta-
stable global configurations of the molecule.Conformational changesare therefore rare
events, which will show up only in long term simulations of the dynamics (e.g., on a nano-
or millisecond time scale). From a mathematical point of view, conformations are special
“almost invariant” subsets in position space:Invariant setscorrespond to infinite durations
of stay (or relaxation times). If the conformations wereinvariant setsof the flow of the
Hamiltonian system, then transitions between different conformations would beimpossible.
Since such transitions exist but arerare, we must understand every conformation to be an
almost invariantsubset of the Hamiltonian flow.

3.1. Dynamical Systems Approach

In what follows, the concept of almost invariant sets and their algorithmic identification,
which has been studied for rather general but low-dimensional dynamical systems, will
shortly be reviewed.

Some subsetS⊂0 is calledinvariantunder the flow8t iff, for all t > 0,

8t (S) = S and, thus, 8−t (S) = S.

We now aim at a precise mathematical understanding of “almost invariance” of a subset
S⊂0. Therefore, we have to introduce a measure for describing the fractionS∩8τ(S) that
remains inSunder the action of the flow8τ . The degree of invariance ofSwith respect to
a certain probability measureµ is given by the corresponding conditional probability

δ(S, τ ) = µ(S∩8τ(S))

µ(S)
≤ 1, Sµ-measurable. (6)

In particular, if S is invariant, thenδ(S, τ )= 1 independent of the choice ofµ. We are
interested in subsetsS with δ(S, τ ) sufficiently close toδ= 1, to be denoted asalmost
invariant subsets. The so-defined notion of almost invariance obviously depends on the
choice of the time spanτ . However, we will see in Subsection 3.3, that (at least for systems
of chemical interest) the influence ofτ on the identification of almost invariant subsets can
be neglected.
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Upon fixing a suitable time spanτ , we have reduced the continuous dynamical system
(5) to a discrete dynamical system

xk+1 = 8τ xk, k = 0, 1, 2, . . .. (7)

The long term behavior of this system is described by so-calledinvariant measures: a
probability measureµ is invariant, iffµ(8τ (S))=µ(S) for all measurable subsetsS⊂0.
Thus,µ(S) may be interpreted as the probability of finding the molecular system inS
at an arbitrary instantt = kτ, k∈Z. Thus, invariant measures are the natural probability
measures to be used in (6) for quantifying almost invariance. Consequently, uniqueness of
the invariant measure is a desirable property since it guarantees that almost invariance is
well-defined.

The numerical computation of invariant measures is equivalent to the solution of an
eigenvalue problemfor the so-calledFrobenius–Perron operator U. Invariant measures
correspond to eigenmodes ofU for its largest eigenvalueλ= 1. It has been discovered in
[8] that for many discrete dynamical systems

almost invariant setsare related to eigenmodes of the
Frobenius–Perron operator for eigenvaluesλ ≈ 1 insidethe (8)
unit circle(|λ| < 1).

One strategy for identification of almost invariant sets is to discretize the Frobenius–Perron
operator in order to approximate these eigenvaluesλ≈ 1. In a sequence of articles (cf. [15,
8]), M. Dellnitz and co-workers established numerical techniques realizing this strategy
for different non-Hamiltonian systems. The Frobenius–Perron operator is discretized via
a multi-level subdivision process, which generates a box covering of the system’s relative
global attractor. Recently, this approach has been extended to Hamiltonian systems with
intriguing numerical results [1].

This “dynamical systems approach,” however, has two crucial difficulties. First, this
approach turns out to be useful only for small molecular systems, since it suffers fromcom-
binatorial explosionof the necessary number of discretization boxes already for moderate
size molecules. Second, the approach has some deep-lying conceptual problems that are
related to the properties of the Frobenius–Perron operator for Hamiltonian systems. To un-
derstand these problems, one has to discuss the physical meaning of the Frobenius–Perron
operatorU in the context of statistical mechanics. This will help us to draw the appropriate
consequences for the molecular ensembles to be considered herein and, finally, to trans-
form the key ideas of the dynamical systems approach into an algorithmic concept being
applicable to the identification of biomolecular conformations.

3.2. Reformulation in Terms of Statistical Mechanics

In order to understand the physical meaning of the Frobenius–Perron operator for
Hamiltonian systems, we recall the basic equations of motion in statistical mechanics.
The evolution of astatistical ensembleof identically prepared systems is described by
a time dependent probability densityf = f (x, t) in phase space. The propagation of the
probability density is described by the Liouville equation for the HamiltonianH ,

∂t f = iL f = {H, f }, f (t = 0) = f0, (9)
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where {·, ·} denotes the well-known Poisson bracket andL=−i {H, ·} the associated
Liouville operator (cf. [16]). The densityf0 describes the initial probability distribution
in the statistical ensemble, i.e.,f0(x) is interpreted as the relative frequency in the ensem-
ble of systems in statex at timet = 0. Therefore, the density must bedefinedin accordance
with the initial experimental preparationof the ensemble.

On one hand, the solution of (9) is given by the flow as

f (x, t) = f0(8
−t x);

on the other hand, it can be denoted using the semi-group generated byL on the Hilbert
spaceL2(0),

f (·, t) = exp(i tL) f0. (10)

3.2.1. Frobenius–Perron Operator in Statistical Mechanics

For the Hamiltonian system (7), the Frobenius–Perron operatorU of the dynamical
systems approach is identical with the statistical propagator in (10), that is,

U = exp(i τL), yieldingU f = f ◦8−τ , (11)

acting onL2(0)={ f :
∫
0
| f (x)|2 dx<∞}, for details see [17, 18]. SinceL is self-adjoint

[19], U is unitary inL2(0). Thus, the spectrum ofU in L2(0) lies on the unit circle and
there simply are no eigenvaluesλ<1 allowing for the identification of almost invariant
sets. (The same is true inL1(0), see [17, Proposition 3.1.2; 18].)

Moreover, all stationary solutions of the Liouville equations are invariant densities of
U , i.e., eigenvectors for the eigenvalueλ= 1. In particular, forarbitrary smooth functions
F :R→ [0, 1], the associated densitiesf (x)= F(H(x)) are stationary solutions of the
Liouville equation. Consequently, there are infinitely many invariant densities (and associ-
ated invariant measures) forU .

As a consequence of our considerations, one has to replace the Frobenius–Perron operator
by an alternative stochastic operator that represents the restriction to the stationary ensemble
density under consideration and—since the conformations are purelyspatial objects—
describes spatial fluctuation within this ensemble. After introducing the appropriate notation
in the subsequent paragraph, we will see in Subsection 3.3 that this can in fact be realized.

3.2.2. Spatial Fluctuations in the Canonical Ensemble

Most experiments on molecular systems are performed under the conditions of constant
temperature and volume. The corresponding stationary density is thecanonical density
associated with the HamiltonianH

f0(x) = 1

Z
exp(−βH(x)), with Z =

∫
0

exp(−βH(x)) dx,

whereβ = 1/kBT , with T being the system’s temperatureT andkB Boltzmann’s constant.
SinceH was assumed to be separable,f0 is a product

f0(x) = 1

Zp
exp

(
−β

2
pT M−1 p

)
︸ ︷︷ ︸

=P(p)

1

Zq
exp(−βV(q))︸ ︷︷ ︸
=Q(q)

, (12)
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where we normalizeP andQ such that∫
P(p) dp=

∫
Q(q) dq = 1.

In the following we always consider thiscanonical ensemble, i.e., f0 will always be given
by (12).

We are interested in particular almost invariant subsets of the canonical ensemblef0.
Thus, the probability measureµ in the basic definition (6) of almost invariance is now given
by the densityf0. Then, the definition (1) of the statistical transition probabilities allows us
to rewrite the degreeδ(S, τ ) of invariance of some subsetS⊂0 asδ(S, τ )=w(S, S, τ ).
Thus,S⊂0 is almost invariant ifw(S, S, τ )≈ 1.

As already discussed above, conformations are related to subsets of theposition space
Ä⊂R3N (the spatial component of the phase space0=Ä×R3N): conformational subsets
are subsetsB⊂Ä such that the corresponding phase space fiber0(B) is almost invariant,
i.e., such that

w(0(B), 0(B), τ ) ≈ 1,

where, as a consequence of (1) and (12),

w(0(B), 0(C), τ ) = 1∫
BQ(q) dq

∫
C

{∫
R3N

χB
(
ξ18

τ(q, p)
)
P(p) dp

}
Q(q) dq,

with ξ1 denoting the projection onto the position component, i.e.,ξ1(q, p)=q. From now
on, we are interested only in subsets of this form and denote the probability to be within
B⊂Ä by

π(B) =
∫

B
Q(q) dq =

∫
0(B)

f0(x) dx. (13)

3.3. Definition of the Spatial Transition Operator

As will turn out subsequently, an appropriate choice for a stochastic operator is thespatial
transition operator Tdefined via momentum weighting due to

T u(q) =
∫

u
(
ξ18

−τ (q, p)
)
P(p) dp, (14)

whereu= u(q) is a functionu :Ä→C and u(ξ18
−τ (q, p)) meansu(q1) if (q1, p1)=

8−τ (q, p) due to the definition ofξ1. In comparison with (11), one may interpretT as the
restriction of the Frobenius–Perron operator to the position coordinates via an appropriate
averaging with respect to the canonical momentum distribution.

We considerT as an operator on the weighted spaces

L p
Q(Ä) =

{
u : Ä→ C,

∫
Ä

|u(q)|pQ(q) dq <∞
}
, p = 1, 2.

Obviously,L2
Q(Ä) is a Hilbert space with scalar product

〈u, v〉Q =
∫
Ä

u∗(q)v(q)Q(q) dq
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and induced norm‖u‖2Q=〈u, u〉Q. With respect to these spaces, the important properties
of T are the following (cf. [18]):

(1) T is a Markov operator onL1
Q(Ä).

(2) T is bounded:‖T u‖Q≤‖u‖Q.
(3) In L2

Q(Ä), T is selfadjoint, since8τ is reversible. Hence, the spectrumσ(T) of
T is real-valued and bounded:σ(T)⊂ [−1, 1].

(4) For subsetsB,C⊂Ä we find

〈TχB, χC〉Q =
∫
0(B)

χ0(C)(8
τ x) f0(x) dx, (15)

showing thatT represents the transition probabilities of our interest.
(5) T is asymptotically stable inL1(Ä), i.e., the eigenvalueλ= 1 is dominant and

simple inL1(Ä) andL2(Ä) (this holds for all systems of chemical interest).

The last property shows thatT has a unique invariant density so that “almost invariance” is
well-defined via (6). Thus,T has all necessary properties to replace the Frobenius–Perron
operator such that, in analogy to (8), we may identify the conformational subsets via the
eigenmodes ofT for eigenvalues nearλ= 1.

In contrast to the properties (1)–(4) which generally hold for Hamiltonian systems, the last
property is only valid for systems satisfying a certain mixing condition: for every position
q∈Ä, the mapyq(p)= ξ18

τ(q, p)must have sufficiently strong mixing properties (e.g.,yq

must not map all possible momentap to a single positionq′ ∈Ä). This mixing condition is
satisfied, e.g., for all molecular systems with periodic boundary condition [18]. It, however,
excludes certain “degenerate” systems such as strictly harmonic systems with periodτ

(whereyq(p)=q for every momentump).
Moreover, for systems satisfying the above condition for everyτ >0, the dominant

eigenmodes ofT—and, thus, the almost invariant sets—are rather insensitive to changes in
τ [18]. In contrast to this insensitivity, the transition probabilities do crucially depend on
τ . The time spanτ appears to be a temperature-like parameter (increases inτ effect a kind
of melting process of the fluctuation-induced mixing in position space, compare [18] for
details).

For the systems of interest, the cluster of eigenvalues nearλ= 1 is separated from the
remaining part of the spectrumσ(T) by some significant spectral gap (cf. [18, Sect. 3.2]):
σ(T) can be decomposed into this so-called Perron cluster{λ1= 1, λ2, . . . , λk} of iso-
lated eigenvaluesλk≤ · · · ≤ λ2< 1, and the remainderσR(T)⊂ [−κ, κ] with some value
0<κ <λk such that (in most cases of interest) the gapg= λk− κ is significantly larger
than the distances between the eigenvalues within the Perron cluster (for examples see
Section 5).

4. TRANSITION PROBABILITIES AND ASSOCIATED MARKOV CHAINS

Since the transition operatorT is a Markov operator inL1(Ä) satisfyingTχÄ=χÄ, it
generates a Markov chain{qk}k=0,1,... with values in the position spaceÄ via the transition
function

P(q1∈ B|q0 = q) = P(q, B) = TχB(q), for all measurableB ⊂ Ä.
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This chain can be realized via thediscrete stochastic dynamical system[18]

qk+1 = ξ18
τ(qk, pk), k = 0, 1, . . . , (16)

with pk being randomly chosen from the momentum distributionP in each step. For systems
of chemical interest, the chain has been shown to be irreducible and aperiodic with unique
stationary densityQ [18]. Moreover, any simulation of the chain via (16) would allow us
to compute the desired transition probabilities in the ensemble, since the definition of its
transition function implies

P(qk ∈ C|q0 ∈ B) = 〈χC, T
kχB〉Q, (17)

which in particular yields (3) for the one-step transition probabilities.
Thus, the replacement of the Frobenius–Perron operatorU by the spatial transition oper-

atorT induces an associated change in the dynamical description: the discrete deterministic
dynamical system (7) associated withU is replaced by the stochastically perturbed dynam-
ical system (16) associated withT . In other words, the restriction tospatial fluctuations
via averaging with respect to the canonical momentum distribution may be interpreted as a
specificcoarse grainingof the dynamical description.

In order to compute the conformational subsets via the eigenvalue problem forT , we
will now proceed to the (spatial) discretization ofT . We will see that this finally also leads
to a certain discretization of the Markov chain{qk}k=0,1,... generated byT .

4.1. Spatial Discretization

If we restrict our attention to the weighted Hilbert spaceL2
Q(Ä), we can (as in [8, 1])

naturally derive a special Galerkin procedure to discretize the eigenvalue problemT u= λu.
Let B1, . . . , Bn⊂Ä be a covering ofÄ so thatBk ∩ Bl =∅ for k 6= l and∪n

k=1Bk=Ä.
Then, the sets0(Bk), k= 1, . . . ,n, are a covering of0. Our finite dimensional ansatz space
Vn= span{χ1, . . . , χn} is spanned by the associated characteristic functionsχk=χBk . The
Galerkin projection5n : L2

Q(Ä)→Vn of u∈ L2
Q(Ä) is defined by

5nu =
n∑

k=1

1

π(Bk)
〈χk, u〉Qχk.

The resulting discretized transition operator5nT5n induces the approximate eigenvalue
problem5nT5nu= λu in Vn. Let λ be one of the corresponding eigenvalues and let the
related eigenvector beu= ∑n

k=1 αkχk. Then, the discretized eigenvalue problem has the
form

n∑
l=1

〈Tχk, χl 〉Qαl = λπ(Bk)αk, ∀k = 1, . . . ,n.

After division byπ(Bk) (known to be positive), we end up with the convenient form

Pα = λα with α = (α1, . . . , αn),

where in fact the entries of then× n matrix P are given by the spatial transition probabilities
from Bk to Bl ,

Pkl = 〈Tχk, χl 〉Q
π(Bk)

= w(0(Bk), 0(Bl ), τ ). (18)
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This result finally confirms that (14) was the correct choice of a transition operator in the
statistical context.

SinceT is a Markov operator, its Galerkin discretizationP is a (row) stochastic matrix,
i.e., Pkl ≥ 0 and

∑n
l=1 Pkl = 1 for all k= 1, . . . ,n (for details about stochastic matrices see

[20]). Hence, all its eigenvaluesλ satisfy |λ| ≤1. Moreover, we have the following four
important properties (cf. [18]):

(1) The row vectorπ = (π1, . . . , πn), πk=π(Bk) denotes the discretized invariant
density. Simple calculus reveals thatπ is a left eigenvector to the eigenvalueλ= 1, i.e., that
πP=π .

(2) P is irreducible and aperiodic, which implies that the eigenvalueλ= 1 issimple.
Hence, the discretized invariant densityπ is theuniquestationary distribution ofP.

(3) P is reversible, sinceT is self-adjoint. In other words,P fulfills the condition of
detailed balance:

πk Pkl = πl Plk, ∀k, l ∈ {1, . . . ,n}.

Therefore, all eigenvalues ofP are real-valued:σ(P)⊂ [−1, 1].
(4) Whenever the discretization is fine enough, the dominant eigenvalues ofP are

good approximations of the dominant eigenvalues ofT . In this case,P also has a Perron
cluster of eigenvalues nearλ= 1 which is separated from the remainder of the spectrum by
a significant gap (cf. Section 3, last paragraph).

This means that, for arbitrary coveringsB1, . . . , Bn⊂Ä, the discretization matricesP are
inheriting the most important properties of the operatorT .

As any stochastic matrix, our discretization matrixP also defines adiscrete Markov
chain, i.e., the stochastic (random) walk of a single system through phase space. The
associated statistical interpretation is as follows: If at instancej ∈N the system is inBk,
the probability of finding the system inBl at instancej + 1 is Pkl =w(0(Bk), 0(Bl ), τ ).
With j→∞ the system visits all subsetsBk with the probabilityπk, the value given by the
stationary distribution ofP.

According to our definition of “almost invariance,” we are interested in such unions
B= ∪k∈I Bk of our “discretization boxes”Bk, for which the probabilityw(0(B), 0(B), τ )
to stay within is sufficiently close toδ= 1. In other words, we are looking for a nontrivial in-
dex setI ⊂{1, . . . ,n} so that the discrete system almost certainly stays withinB= ∪k∈I Bk

within one single stepj→ j + 1. As derived in [2], such index sets (“almost invariant aggre-
gates”) can be identified via the right eigenvectors ofP for eigenvalues close toλ= 1. Once
a conformational subsetB has been identified, the probabilityδ(B, τ )=w(0(B), 0(B), τ )
to stay within Bcan easily be computed by virtue of the relation

δ(B, τ ) = 1∑
k∈I πk

∑
k,l∈I

πk Pkl . (19)

4.2. Realization via Hybrid Monte Carlo (HMC)

Up to now, the remaining question is how to compute the matrixP for given boxesBk.
According to (18) we have to determine the transition probabilities between theBk. This
task includes two subproblems:
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(1) “Sampling of the canonical density.” That is, we have to generate a sequence of
statesS={xk, k= 1, . . . ,M}⊂0 that is approximately distributed according tof0.

(2) Approximation of the transition probabilities. We will see below that this reduces
to counting all suchxj ∈ S for which xj ∈0(Bk) and8τ xj ∈0(Bl ). For checking the last
condition, sufficient approximations̃x j ≈8τ xj of all M subtrajectories starting fromSare
needed.

The typical approach to sampling the canonical density is via Monte Carlo (MC) techniques.
The literature on this topic is extremely rich and varied [21, 22]. The reader might notice
that we need not give particular merits to any special MC variant sinceeveryconverging MC
method would allow us to realize the subproblem 1 from above. In addition, one may also
apply MD-based techniques, e.g., constant temperature sampling of the canonical density
[23, 24].

Despite this, we suggest applying a certainhybrid Monte Carlo(HMC) technique, merely
because it seems to be particularly appropriate for linking the above mentioned subproblems
(1) and (2). In order to explain this advantage and the basic idea of HMC let us shortly recall
that the transition probabilities may be computed via the Markov chain (16) associated with
our transition operatorT . Iterations of (16) realize sequences{qk} which are (asymptoti-
cally) distributed due toQ and allow us to determine the relative frequency of transitions
qk ∈ Bj →qk+1∈ Bl for arbitrary box numbersj and l . The convergence guarantees that
the relative frequencies approximate the desired transition probabilities in the sense that

#(qk ∈ Bj ∧ qk+1 ∈ Bl )

#(qk ∈ Bj )
→ w(0(Bj ), 0(Bl ), τ ). (20)

Thus, we have to ask whether one can realize the iteration (16) by replacing the exact flow8τ

by an appropriate approximation. For answering this question, let91t denote a reversible
and volume-preserving one-step discretization of the flow8t , i.e., of the Hamiltonian
equations (5). The reader, who is not familiar with this notation, may think of91t as de-
noting the well-known Verlet discretization [25, 14] with stepsize1t . The approximation
of 8τ via m steps of this discretization yields the discrete flow

g = (9τ/m)m, m ∈ N,

with m being large enough such that the stepsizeτ/m is adequate. Unfortunately, the
underlying stationary densityf0 is not invariant under the action ofg, sinceg does not
preserve the energy of the system. (There is no discretization which is symplectic and
reversible and simultaneously preserves energy exactly [26]. We may reduce the energy
error, produced byg, to an arbitrary small value by increasingm, but this would lead to a
totally inefficient computation scheme.)

4.2.1 Standard Hybrid Monte Carlo (HMC)

Hence, we have to look for a Markov chain, which allows us to sampleQwhile containing
only g and not the flow itself. This requirement naturally leads us to so-called “hybrid”
Monte Carlo variants which to our knowledge have first been introduced in the late 1980s
(cf. [27]) and have in MD mostly been used for condensed matter and polymer-like systems
(cf. [28–30]). HMC generates a sequence(qj )⊂Ä in position space. The HMC update step
qj →qj+1 is based on the typical Metropolis Monte Carlo proposal/acceptance strategy:
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The first part of the HMC proposal step is to choose momentapj randomly fromP, gain-
ing the statexj = (qj , pj ). As the second part, compute the proposal statex̃ j via a short
approximate subtrajectory of the underlying Hamiltonian system, i.e., choosex̃ j = g(xj ).
Then, apply the standard Metropolis MC acceptance step toxj and x̃ j , let the accepted
state bexj+1, and finally setqj+1= ξ1xj+1. In other words, HMC realizes an iteration of
the Markov chain

qj+1 = ξ1a(qj , pj , r j ) with a(x, r ) =
{

g(x), if r ≤ α(x),
x otherwise,

settingα(x) = min{1, exp(−β1E(x))}, (21)

with 1E(x)= H(g(x))− H(x),

with pj independently chosen randomly fromP andr j randomly from the equidistribution
in [0, 1]. In this form, HMC has to be understood as apure position samplingof the spatial
canonical distributionQ such that the resulting Markov chain{qj } allows us to approximate
the expectation values of appropriatespatialobservablesA :Ä→R in the sense that we
have asymptotically [18, 31, 32]∣∣∣∣∣ 1

M

M∑
j=1

A(qj )−
∫
0

A(q)Q(q) dq

∣∣∣∣∣ ≤ C M−1/2, (22)

with a constantC not explicitly depending on dim(0)= 6N. Thus, we are able to approx-
imate the desired transition probabilitiesw(0(Bk), 0(Bl ), τ ) “simply” by counting accord-
ing to (20). The main advantage of HMC in this context is obvious: we need approximations
of 8τ xj and get them “for free” if we usem1t = τ with sufficiently small1t in the HMC
iteration (21).

Theoretically, the transition matrixP is reversible. In order to reproduce this property
for its approximation, we may simply count each transition fromBk to Bl as a transition
Bl→ Bk, too (thus exploiting the reversibility of the discretization91t ).

4.2.2. Reweighted Hybrid Monte Carlo (ATHMC)

It is well known that MC simulations for ensemble averages may suffer from possible
“critical slowing down” [33]. This phenomenon occurs when the iterationxk→ xk+1 gets
trapped near a local potential minimum due to high energy barriers so that a proper sam-
pling of the phase space within reasonable computing times is prevented. Typically, this
also happens to HMC applications to biomolecules [34, 9]. Therefore, a novel approach
combining HMC with the reweighting technique [10, 11] has been developed [12]. This
HMC variant generates the distribution of a mixed-canonical ensemble composed of two
canonical ensembles at low and high temperature. Its analysis shows an efficient sampling
of the canonical distribution at the low temperature, whereas the high temperature compo-
nent facilitates crossing of the crucial energy barriers. We will call this variant “adaptive
temperature HMC” (ATHMC) in the following. The sampling positionsqj generated by
high temperature update steps have to bereweightedin order to guarantee overall con-
vergence to the canonical position distribution to the low temperature. Moreover, we have
to supply additional trajectories in order to guarantee that the initial momenta of the set
of trajectories starting in one of the sampling positionqj are weighted according to the
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correct low temperature. For details of the ATHMC construction, the reader is referred to
our article [12].

The necessity of introducing generalizations of HMC is caused by theexistence of al-
most invariant sets: If there are almost invariant sets, denotedB andC, with small tran-
sition probabilityw(0(B), 0(C), τ ), then, both, the Markov chain (16) associated with
the transition operator and the original HMC Markov chain need a huge number of itera-
tions in order to produce sufficiently many of the rare transitions betweenB andC. This
problem is circumvented by introducing the ATHMC chain which facilitates such transi-
tions but has to be reweighted in order to yield samplings of the original canonical distri-
bution.

The reader might also notice that there are other Monte Carlo Markov chain techniques
which allow us to enforce barrier crossing (for example, the multicanonical algorithm [35],
simulated tempering [36], J-walking [37], the fluctuating potential method [38], and other
novel approaches [11]).

4.3. Essential Degrees of Freedom

Typical biomolecular systems contain hundreds or thousands of atoms. As a consequence,
any direct spatial discretization of the transition operatorT suffers from the curse of di-
mension, since the number of discretization boxes grows exponentially with the size of the
molecular system under consideration. Our strategy to circumvent the curse of dimension
is based on chemical observation. In the chemical literature conformations of biomolecules
are mostly described in terms of fewessential degrees of freedom. In the subspace of es-
sential degrees of freedom anharmonic motion occurs that comprises most of the positional
fluctuation, while in the remaining degrees of freedom the motion has a narrow Gaussian
distribution and can be considered as “physically constrained.” We may determine essen-
tial degrees of freedom either in the coordinate space according to Amadeiet al. [13] or
in the space of internal degrees of freedom, e.g., torsion angles, by statistical analysis of
circular data [39, 40]. Both procedures result in a tremendous reduction of dimension (see
Subsection 5.2).

After partitioning the chosen essential degrees of freedom resulting in discretization boxes
B1, . . . , Bm we assemble the transition matrixP and solve the corresponding eigenvalue
problem. Since we only need the Perron cluster of the largest eigenvalues nearλ= 1, we
apply subspace oriented iterative techniques (see, e.g., [41, 42, Sect. 4.1]) to solve the
eigenvalue problem. It is important that the convergence rate only depends on the spectral
gap between the Perron cluster and the remaining part of the spectrum (see Subsection 3.3)
and isindependent of the size of the transition matrixand thus of the number of discretization
boxes. Therefore, neither the HMC sampling techniques nor the solution of the eigenvalue
problem do scale exponentially with the size of the molecule.

5. NUMERICAL EXPERIMENTS

In this section, the performance of the above derived algorithm in application to
n-pentane and to the triribonucleotide adenylyl(3′–5′)cytidylyl(3′–5′)cytidin is presented.
The application to n-pentane allow us to follow closely the single steps of the algorithm,
while the case of the ribonucleotide exemplifies the performance of the algorithm when
applied to biologically relevant systems.
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FIG. 2. Different conformations of n-pentane. From the left to the right, trans-trans, trans-gauche, gauche-
gauche orientations.

5.1. Application to n-Pentane

Figure 2 illustrates the chemically observed conformations of the n-pentane molecule
CH3(CH2)3CH3.

For the n-pentane Hamiltonian, we use the united atom model (cf. Fig. 3) with the
typical bond length and bond angle potentials, and a Lennard–Jones potential modelling
the interaction between the first and the last of the united “atoms.” The dihedral angle
potentials are chosen according to [43], cf. Fig. 3. The form of the dihedral angle potential
shows three different minima corresponding to the trans and gauche orientations of the
angles. The vibrational frequencies induced by these potentials are considerably smaller
than those induced by the bond interactions. Consequently, in this simple example, the
dihedral angles can be selected as the essential degrees of freedom mentioned above in
Subsection 4.3.

Figures 4–7 illustrate the performance of the algorithm for the temperatureT = 300 K.
The discretization boxes are constructed via uniform decomposition of the possible values
[0, 2π ]× [0, 2π ] of the two dihedral anglesω1 andω2 in n= 20× 20= 400 boxes. The
HMC sampling has been realized using the Verlet time discretization with a subtrajectory
length ofτ = 160 fs. Figure 4 shows the resulting sequences of HMC steps in terms of the
dihedral angles.

FIG. 3. United atom model of n-pentane with the two dihedral anglesω1 andω2. On the left, dihedral angle
potential due to [43]. The main minimum corresponds to the trans orientation of the angle; the two side minima
to the±gauche orientations.
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FIG. 4. HMC simulation of n-pentane forT = 300 K. From top to bottom, the two dihedral angles versus the
step number and the convergence of the potential energy expectation〈V〉.

We observe frequent transitions between the different trans and gauche orientations of
both angles. This observation illustrates that it is not sufficient to know the probability to
be withina particular orientation of the angles but that the essential dynamical information
is given by the probability tostay withinit until a transition into another orientation occurs.

Based on such a HMC sampling withM = 200,000 steps, thetransition matrix P is
assembled by the procedure explained in Subsection 4.2. Within this sampling length, the
HMC method produces a sufficient sampling of the canonical density (see the equilibration
diagram on bottom of Fig. 4). That is, in this case, we observe no serious trapping problems
and application of ATHMC is not absolutely necessary. When switching to lower temper-
atures (as, e.g., for the simulation underlying Fig. 8), the rate of convergence of the HMC
sampling slows down significantly and an application of ATHMC allows us to decrease
sampling lengths for more than an order of magnitude (cf. [12]).

From Subsection 4.1 we know that the discrete invariant density(π(Bk))k=1,...,n is given
by the left eigenvector ofP for the largest eigenvalueλ1= 1. The result is given in Fig. 5.
As expected, the invariant density shows distinct local maxima at the minima of the dihedral
angle potentials.

5.1.1. Conformations

Following [2], the chemical conformations are analyzed via the right eigenvectors cor-
responding to an eigenvalue cluster nearλ= 1. A presentation of the derivation of the
algorithmic procedure would be beyond the scope of the present paper. We herein only give
a sketch of the construction principle: In a first step, determine the eigenvalue cluster near
λ= 1, which is separated from the remaining part of the spectrum by a significant spectral
gap—in our case, these are the seven largest eigenvalues. Figure 6 shows a schematic plot
of the corresponding right eigenvectors. We observe that we may decompose the discretiza-
tion domain into disjoint regions by distinguishing between different positive, negative,
and almost zero values of these eigenvectors. The details of the algorithmic realization are
nontrivial, because it has to include an iterative procedure to decide what is “almost zero.”
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FIG. 5. Discrete canonical distribution for n-pentane versus the indices of the discretization boxes of the two
dihedral anglesω1 andω2. T = 300 K.

By analyzing the eigenvectors as illustrated, the algorithm from [2] identifies the confor-
mational subsets shown in Fig. 7. As can be seen the automatic procedure in fact supplies the
chemically expected information. After identifying the conformations, the corresponding
probabilities to stay within each conformational subset can be computed due to Eq. (19).
The resulting valuesp are also given in Fig. 7. We observe that the trans/trans conformation
is slightly more stable than the different trans/gauche and gauche/trans conformations. As
expected, the two gauche/gauche conformations are clearly less stable.

FIG. 6. Schematic plot of the right eigenvectors corresponding to the seven largest eigenvaluesλ1, . . . , λ7 of
P versus the indices (1, . . . ,20)× (1, . . . ,20) of the discretization boxes of the two dihedral anglesω1 andω2.
Positive entries of the eigenvectors are indicated by black boxes, negative entries by gray boxes, and white boxes
indicate almost zero entries.T = 300 K.
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FIG. 7. Almost invariant sets forT = 300 K. The numbersp on top of each figure are the probabilities to
stay within the corresponding subsets during the time spanτ . From the left hand side on top to the right hand side
below we see the−gauche/trans, trans/+gauche,−gauche/−gauche, trans/trans, trans/−gauche,+gauche/trans,
and+gauche/+gauche conformations (cf. Fig. 2).

As already emphasized above, the probabilities tostay withinshouldnotbe confused with
the probability tobe withina conformation, which is already given by the invariant density
(cf. Fig. 5). In the table below, these two different probabilities are listed for each of the
conformational subsets shown in Fig. 7 (±g and t denote the±gauche and trans orientations):

Conformation −g/t t/+g −g/−g t/t t/−g +g/t +g/+g

Prob. to be within 0.120 0.132 0.012 0.473 0.117 0.132 0.013
Prob. to stay within 0.976 0.980 0.910 0.982 0.979 0.970 0.865

The slight differences between the probabilities to be within the±g/t and t/±g orienta-
tions may be used as an error indicator for the sampling. The probability to be within the
+gauche/−gauche or−gauche/+gauche orientations is less than 0.0005, showing that they
are irrelevant in this context.

5.1.2. Parameter Sensitivity

The results presented herein surely depend on a number of crucial parameters, some of
them being of a physical nature (e.g., the temperatureT ), others being introduced by the
algorithm (e.g., the numbern of discretization boxes or the lengthM of the HMC sampling).
We want to emphasize that the algorithm as it stands now is far from being perfectly tuned.
We thus can only present some experiences from numerical experiments for the n-pentane
molecule and some other comparably small systems.

At first, let us consider the dependence of the conformations on the temperatureT .
Varying the temperature betweenT = 200 K andT = 600 K we do not observe an influence
on the identified conformations. But, as to be expected, the probabilities to stay within these
conformations are decreasing with increasingT : Figure 8 shows the corresponding decrease
of the nine largest eigenvalues of the transition matricesP= P(T ). It also illustrates that in
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FIG. 8. Temperature dependence of the nine largest eigenvalues of the transition matrixP.

all cases tested so far there exists a distinctspectral gapbetween the seven largest eigenvalues
used to identify the conformational subsets and the remaining part of the spectrum.

Obviously, the quality of the results depends crucially on the lengthM of the HMC
sampling. If, for fixed temperature and spatial discretization, the number of steps is decreased
from M = 200,000 down toM = 50,000, we observe that the approximation quality of the
invariant density slowly deteriorates. This corresponds to a slowly increasing distortion of
the approximate “conformational” subsets. Thus, it is of primary importance to check the
quality of the Monte Carlo sampling via appropriate convergence indicators [44].

5.1.3. Dependence on Discretization

Finally, let us illustrate an extremely important property of the presented algorithm, the
stability of the results even when significantly coarser discretizations are used. For the
n-pentane molecule we indeed can reduce the decomposition of the discretization domain
from n= 20× 20 boxes ton= 3× 3 boxes but the algorithm still identifies approximately
the same conformations and nearly the same probabilities (both to stay and to be within).
The reason for this is illustrated in Fig. 9: since the HMC procedure samples the phase space
independent of the discretization, the seven largest eigenvalues of the transition matrixP
are only insignificantly perturbed when the number of discretization boxes is reduced.

5.2. Application to a Ribonucleotide

In this section, the performance of the algorithm in application to the triribonucleotide
adenylyl(3′–5′)cytidylyl(3′–5′)cytidin at temperatureT = 295 K is presented. The trinu-
cleotide molecule is modelled by means of the potential and masses of the extended atom
representation of Gromos [45]. Solvent effects are neglected.

The numerical results to be presented are based on an ATHMC sampling of the canon-
ical density using subtrajectories of lengthτ = 80 fs computed by means of the Verlet
discretization with stepsize1t = 2 fs. For these parameters, HMC simulations typically
require thousands of iterations only to leave the neighborhood of the initial configuration.
Application of ATHMC (with adaptive temperatures betweenT = 295 K andT + = 400 K)
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FIG. 9. Sensitivity of theabsolutelylargest eigenvalues ofP for different uniform discretizations of [0, 2π ]2

with n= 3× 3= 9 boxes (dashed line),n= 9× 9= 81 (dashed-dotted), andn= 20× 20= 400 boxes (dense line).
Note that the seven largest eigenvalues—only these are used for the identification of the conformations—remain
almost unperturbed if the grid gets coarser.

circumvents the problem: one observes frequent transitions in the crucial torsion angles of
the molecule (for details see [12]). The ATHMC simulation was terminated by the associ-
ated convergence indicator [44] afterM = 32,000 steps, resulting in the sampling sequence
q1, . . . ,qM , and corresponding reweighting factors. The sampling process was completed
by the “transition sampling” by computing four subtrajectories8τ(qk,qk,l ) for each of the
sampling positionsqk with initial momentapk,l randomly chosen fromP.

Based on this ATHMC sampling, the essential degrees of freedom of the molecule were
determined by applying an identification procedure based on statistical analysis of circu-
lar data [39, 40] similar to that proposed by Amadeiet al. [13] but using torsion angles
instead of position information [46]. In this proceduregeneralized angle coordinatesare
introduced (linear combinations of the torsion angles defined by eigenvectors of the circular
covariance matrix that measures correlations between the torsion angles). The distribution
of the sampling sequence (qk) with respect to these generalized coordinates has the form of
some narrow Gaussian for most of the coordinates (indicating that they can be considered
“physically constrained”), while it is non-Gaussian for a small number of coordinates only
(cf. Fig. 10). In our case, only four degrees of freedom showed such non-Gaussian distribu-
tion. The partitioning of the corresponding four-dimensional essential configuration space
was chosen such that these distributions are decomposed into their single Gaussian-like
parts (cf. Fig. 10). This process generated 36 discretization boxes.

For this partitioning, the transition matrixP (size 36× 36) was assembled by counting
the transitions between the discretization boxes based on the 4× 32,000= 128,000 sub-
trajectories of the transition sampling and weighting each transition due to its reweighting
factor. Since every box had been hit by sufficiently many events the statistical sampling
was accepted to be reliable. The computation of the dominant eigenvalues ofP yielded a
Perron cluster of 8 eigenvalues with a significant gap to the remaining part of the spectrum.

k 1 2 3 4 5 6 7 8 9 . . .

λk 1.000 0.999 0.989 0.974 0.963 0.946 0.933 0.904 0.805. . .
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FIG. 10. Distribution of the sampling sequenceq1, . . . ,qM with respect to two of the generalized angle
coordinates introduced in the text. Left, distribution for an essential degree of freedom (possible decomposition
illustrated by dashed lines). Right, Gaussian distribution for some nearly “physically constrained” degree of
freedom.

Finally, the conformational subsets were computed based on the corresponding 8 right
eigenvectors ofP via the identification algorithm presented in [2]. The results turned out to
be rather insensitive to further refinements of the partitioning. The corresponding probabil-
ities to stay within and to be within these conformational subsets are listed in the following
table:

Conformation 1 2 3 4 5 6 7 8

Prob. to be within 0.320 0.285 0.116 0.107 0.095 0.038 0.028 0.011
Prob. to stay within 0.991 0.981 0.961 0.986 0.962 0.949 0.888 0.938

The resulting dynamical conformations are closely related to the conformations resulting
from standard geometric identification algorithms, but the available dynamical information
allows us to gain further insight in the transitions between the conformational subsets (for
a detailed comparison, see [46]).
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